Antioxidant capacity and in vitro bioactive metabolites of the essential oil of Tagetes erecta and Tagetes patula

Authors

  • Peter Llimpe Perez Universidad Nacional de Huancavelica, Huancavelica - Perú
  • Lissete Lourdes Aguirre Huayhua Universidad Nacional de Huancavelica, Huancavelica - Perú
  • Oliver Taype Landeo Universidad Nacional de Huancavelica, Huancavelica - Perú
  • Franklin Ore Areche Universidad Nacional de Huancavelica, Huancavelica - Perú

DOI:

https://doi.org/10.53673/th.v1i1.5

Keywords:

chromatography, Density, essential oil, solubility

Abstract

The research had the objective of investigating the bioactive metabolites and antioxidant activity of essential oils of two species of the genus Tagetes. The essential oil was obtained by steam stripping, then the extraction yield, relative density, refractive index and its solubility in ethanol (70% v/v) were determined. The chemical composition was evaluated by gas chromatography coupled to mass spectrometry (GC-MS). The antioxidant activity was determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical method and the radical cation trapping capacity ABTS*+. In the essential oils of the Tagetes species, it was possible to identify 26 chemical components for the Tagetes patula species and 16 for Tagetes erecta. Both species presented monoterpenes (61%) and sesquiterpenes (44%) as main components. The bioactive metabolites of essential oils between both species of Tagetes were β-trans-Ocimene (25.03%), Trans-Tagetone (51.37%), β-Myrcene (2.78) and β-Caryophyllene (1, 17%). The extraction yields ranged between 0.05 and 0.048%, the density between 0.90 and 0.88 (g/ml) with a refractive index of 1.493 and 1.482 and a positive solubility (v/v) between both species. The antioxidant activity of the essential oil in both species showed a variation between 1.77 and 2.56 mg/mL for DPPH and 21.02 to 41.06 mg/mL for BTS*+. The essential oils of the species Tagetes erecta and Tagetes patula are a source of bioactive metabolites that promote antimicrobial and antioxidant potential for use as food preservatives.

References

Ausama A Safar 1, Anwar O Ghafoor 2, Dara Dastan. (2020). Composición química, actividades antibacterianas y antioxidantes del aceite esencial de Tagetes patula L. criado en Erbil, Iraq. Departamento de producción vegetal, Instituto Técnico Khabat, Universidad Politécnica de Erbil, Erbil, Región del Kurdistán, Irak; Departamento de Biología, Facultad de Educación, Universidad Salahaddin-Erbil, Erbil, Región del Kurdistán, Irak 2 Departamento de Biología, Facultad de Educación, Universidad Salahaddin-Erbil, Erbil, Región del Kurdistán, Irak.

Brand-Williams, W., M.E. Cuvelier & C. Berset, (1995). Use of a free radical method to evaluate antioxidant activity, LebensmittelWissenchaft und Technologie: 28(1), 25-30.

Chalchat, J.C.; Garry, R.P.; Muhayimana, A. (1995). Essential oil of Tagetes minuta from Rwanda and France: Chemical composition according to harvesting location, growth stage and part of plant extracted. J. Essent. Oil Res. 7(4): 375-386.

Chrysargyris A, Mikallou M, Petropoulos S, Tzortzakis N. (2020). Perfilado de componentes de aceites esenciales y polifenoles para determinar su actividad antioxidante de plantas medicinales y aromáticas cultivadas en diferentes condiciones ambientales. Agronomía; 10 (5): 727.

Deba, F., Xuan, T.D., Yasuda, M. &Tawata, S. (2008). Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bidens pilosa linn. Var. Radiata. Food Control 19, 346–352.

DelgadoVargas, F., A.R. Jimenez & O. Paredes-Lopez. 2000. Natural Pigments: Carotenoids, Anthocyanins, and Betalains Characteristics, Biosynthesis, Processing, and Stability. Critical Reviews in Food Science and Nutrition 40(3): 173-289.

G. Oliveira-Everton, R.J. Pereira-Araújo, A.B. da Silva dos Santos, P.V. Serra-Rosa, R.G. de Oliveira- Carvalho Junior, A.M. Teles, P.R. Barros-Gomes, V.E. Mouchrek Filho, (2020). Caracterização química, atividade antimicrobiana e toxicidade dos óleos essenciais da Pimenta dioica L. (pimenta da Jamaica) e Citrus sinensis L. Osbeck (laranja doce), Rev. Colomb. Cienc. Quím. Farm., 49(3), 641- 655

Gakuubi, M.M., Wanzala, W., Wagacha, J.M., Dossaji, S.F. (2016a). Bioactive properties of Tagetes minuta L. (Asteraceae) essential oils: a review. Amer. J. Essent. Oil Nat. Prod. 4, 27–36.

GLIMAN, E.F. & T. HOWE. 1999. Tagetes erecta. Institute of Food and Agricultural Sciences. Fact Sheet FPS-569: 1-3.

Hüsnü, K., Başer, C., y Demirci, F. (2007). Chemistry of Essential Oils. Flavours and Fragrances, (1), 43-86.

Jacobs, J. J.; A. Engelberts; A. F. Croes; G. J. Wullems. (1994). "Thiophene synthesis and distribution in young developing plants of Tagetes patula and Tagetes erecta"; Journal of Experimental Botany 45: 1459- 1466

Marotti M, Piccaglia R, Biavati B, Marotti I. (2004). Caracterización y evaluación del rendimiento de aceites esenciales de diferentes especies de Tagetes. J Essent Oil Res; 16: 440-4.

Ojeda, M.S., Torkel Karlin, U.O., Martinez, G.J., Massuh, Y., Ocaño, S.F., Torres, L.E., Chavez, A.G. (2015). Arizio, O., Curioni, A. Planta Aromáticas y Medicinales Modelos para su Domesticación, Producción y Usos Sustentables [Aromatic and medicinal plant models for domestication, production and sustainable uses]. Ed. UNC, Córdoba, Argentina.

Preedy, V. 2016. Essential oils in food presservation, flavor and safety. Academic Press is an imprint of Elsevier, Amsterdam. 932 pp.

Rostaei, M., Fallah, S., Lorigooini, Z., Abbasi Surki, A. (2018b). Crop productivity and chemical compositions of black cumin essential oil in sole crop and intercropped with soybean under contrasting fertilization. Ind. Crop Prod. 125, 622–629. https://doi. org/10.1016/j.indcrop. 09.044.

Salehi B, Valussi M, Morais-Braga MFB, Carneiro JNP, Leal A, Coutinho HDM, et al. (2018). Tagetes spp. Aceites esenciales y otros extractos: Caracterización química y actividad biológica. Moléculas. 23: 2847.

Simard, S.; Hachey, J.M.; Collin, G.J. (1988). The variations of essential oil composition during the extraction process. The case of Thuja occidentalis L. and Abies balsamea (L.) Mill. J. Wood Chem. Technol. 8: 561-573.

Singh, V., Singh, B., Kaul, V.K. (2003). Domestication of wild marigold (Tagetes minuta L.) as a potential economic crop in western Himalaya and north Indian plains. Econ. Bot. 57, 535–544.

Swati, W., Srijana M., Vinod, B., Rakshak K., Rakesh K. (2020). Variability in chemical composition and antimicrobial activity of Tagetes minuta L. essential oil collected from different locations of Himalaya. Academy of Scientific and Innovative Research, New Delhi, India.

Tajkarimi, M.; Ibrahim, S. & Cliver, D. (2010). Hierbas antimicrobianas y compuestos de especias en los alimentos. Control de alimentos. 21, 1199–1218,

Tohidi, B., Rahimmalek, M., Arzani, A. (2017). Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of Thymus species collected from different regions of Iran. Food Chem. 220, 153–161.

Torres, S. (2011). Marigold o cempasúchil, la flor maravilla: Escasea en el mundo. Article appeared in Industria Avícula, guadlajara, Jalisco, México.

Vásquez Ocmín, P.; Cojean, S.; Rengifo, E.; Suyyagh-Albouz, S.; Amasifuen Guerra, C.A.; Pomel, S.; Cabanillas, B.; Mejía, K.; Loiseau, P.M.; Figadère, B.; Maciuk, A. (2018). Antiprotozoal activity of medicinal plants used by Iquitos-Nauta road communities in Loreto (Peru). 210: 372-385

Villareal, J.A. & J.L. Villaseñor. 2004. Flora de Veracruz: Compositae y tribu Tagetae. Instituto de Ecología y University of California 135: 1-67.

Published

2021-03-05

How to Cite

Peter Llimpe Perez, Lissete Lourdes Aguirre Huayhua, Oliver Taype Landeo, & Franklin Ore Areche. (2021). Antioxidant capacity and in vitro bioactive metabolites of the essential oil of Tagetes erecta and Tagetes patula. Tecnohumanismo, 1(1), 226–237. https://doi.org/10.53673/th.v1i1.5