Analysis of Landsat 8 satellite images by principal components and MNF for the detection of areas of the Repsol oil spill on the Peruvian coast

Authors

  • Jaime Yelsin Rosales Malpartida Universidad Nacional de Ingeniería, Lima, Perú
  • Hebbert Alexander Apaza Mamani Universidad Nacional de Ingeniería, Lima, Perú

DOI:

https://doi.org/10.53673/th.v2i2.110

Keywords:

Landsat 8, derrame de petróleo, Repsol, normalización, procesamiento de imágenes, ACP y MNF

Abstract

The pollution from the oil spill on the Peruvian coast caused by the Italian-flagged ship Mare Doricum, owned by the Spanish company Repsol, not only seriously affected marine flora and fauna but also hundreds of families of Peruvian fishermen, leaving them without work. For this reason, monitoring the effects of these incidents is very important for public health and environmental protection. Satellite missions are a very efficient tool to identify contaminants such as oil spills. The purpose of this study is to detect the area of the oil spill using the Landsat 8 multispectral sensor. To detect the oil spill with greater precision, various preprocessing was performed on the Landsat 8 satellite image, such as conversion to reflectance, normalization with the Bandmax- min of the image of the affected area and finally the methods of principal component analysis (ACP) and the Minimum Noise Fraction (MNF) were performed. All the results were analyzed by programming the free software R, these experimental results clearly indicated that the MNF method is the most suitable to detect the oil spill with greater precision through Landsat 8 multispectral images.

References

Arslan, N. (2018). Assessment of oil spills using Sentinel 1 C-band SAR and Landsat 8 multispectral sensors. Environmental monitoring and assessment, 190(11), 1-14.

Bayramov, E., Kada, M., & Buchroithner, M. (2018). Monitoring oil spill hotspots, contamination probability modelling and assessment of coastal impacts in the Caspian Sea using SENTINEL-1, LANDSAT-8, RADARSAT, ENVISAT and ERS satellite sensors. Journal of Operational Oceanography, 11(1), 27-43.

Berman, M., Phatak, A., & Traylen, A. (2012). Some invariance properties of the minimum noise fraction transform. Chemometrics and Intelligent Laboratory Systems, 117, 189–199.

Cao, F., Yang, Z., Ren, J., Jiang, M., & Ling, W. K. (2017). Does normalization methods play a role for hyperspectral image classification?. arXiv preprint arXiv:1710.02939.

Chavez Jr, P. S. (1984). Image Processing techniques for Thermatic Mapper data. Proceedings, ASPRS-ACSM Technical Papers, 2, 728-742.

Chavez, P. S. (1996). Image-Based Atmospheric Corrections – Revisited and Improved. https://pdfs.semanticscholar.org/45f1/2625ce130261c7d360d50e09c635355ca919.pdf

Dubucq, D., Sicot, G., Lennon, M., & Miegebielle, V. (2016). Detection and discrimination of the thick oil patches on the sea surface. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 8.

Fontanel, A., Blanchet, C., & Lallemand, C. (1975, June). Enhancement of Landsat imagery by combination of multispectral classification and principal component analysis. In NASA. Lyndon B. Johnson Space Center NASA Earth Resources Surv. Symp., Vol. 1-B (No. G-24).

Gade, M. (2015). Synthetic aperture radar applications in coastal waters. Proceedings of the twelfth international conference on the Mediterranean coastal environment MEDCOAST 06–10 October, Varna, Bulgaria.

Gade, M., Alpers, W., Huhnerfuss, H.,Wismann, V. R., & Lange, P. A. (1998). On the reduction of the radar backscatter by oceanic surface films: scatterometer measurements and their theoretical interpretation. Remote Sensing of Environment, 66(1), 52–70.

Gade, M., Byfield, V., Ermakov, S., Lavrova, O., & Mitnik, L. (2013). Slicks as indicators for marine processes. Oceanography, 26(2), 138–149.

Green, A. A., Berman, M., Switzer, P., & Craig, M. D. (1988). A transformation for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on geoscience and remote sensing, 26(1), 65-74.

ITOPF. (2020). Oil Tanker Spill Statistics 2020.

Lee, M. S., Park, K. A., Lee, H. R., Park, J. J., Kang, C. K., & Lee, M. (2016, July). Detection and dispersion of oil spills from satellite optical images in a coastal bay. In 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS) (pp. 2491-2494). IEEE.

Misra, A., & Balaji, R. (2017). Simple approaches to oil spill detection using sentinel application platform (SNAP)-ocean application tools and texture analysis: a comparative study. Journal of the Indian Society of Remote Sensing, 45, 1065–1075. https://doi.org/10.1007/s12524-016-0658

Mo, Y., Kearney, M. S., & Riter, J. C. (2017). Post-deepwater horizon oil spill monitoring of Louisiana salt marshes using landsat imagery. Remote Sensing, 9(6), 547.

Mohamadi, B., Xie, Z., & Liu, F. (2015). GIS based oil spill risk assessment model for the Niger Delta's vegetation. Nature Environment and Pollution Technology, 14(3), 545.

Montali, A., Giacinto, G., Migliaccio, M., & Gambardella, A. (2006). Supervised pattern classification techniques for oil spill classification in SAR images: preliminary results. Proceedings of the SEASAR2006 workshop, ESA-ESRIN, Frascati, Italy.

Moran, M. S., Jackson, R. D., Slater, P. N., & Teillet, P. M. (1992). Evaluation of simplified procedures for retrieval of land surface reflectance factors from satellite sensor output. Remote Sensing of Environment, 41(2-3), 169-184. https://doi.org/10.1016/0034- 4257(92)90076-V

Pashayev, N.M., Ragimov, R.M., Samedov, F.R., Gahramanova, D.S., 2018. Aerospace monitoring of the oil pollution of the Caspian Sea on the base of GIS technology and radar space images. IFAC-PapersOnLine 51 (30), 558–560.

Richards, J. A. (1999). Remote sensing digital image analysis: an introduction. Berlin: Springer-Verlag.

Schowengerdt, R. A. (2012). Techniques for image processing and classifications in remote sensing. Academic Press.

Shuchman, R. A., Onstott, R. G., Johannessen, O. M., Sandven, S., & Johannessen, J. A. (2004). Processes at the ice edge: the arctic. Synthetic Aperture Radar marine user’s manual, 373-395.

Sobrino, J. A., Jiménez-Muñoz, J. C. and Paolini, L. 2004. 84 Land surface temperature retrieval from LANDSAT TM 85 5, Remote Sens. Environ., vol. 90, 434-44

Solberg, A., Brekke, C., & Husoy, P. (2007). Oil spill detection in Radarsat and ENVISAT SAR images. IEEE Transactions on Geoscience and Remote Sensing, 45(3), 746–755.

Taylor, M. M. (1974, January). Principal components colour display of ERTS imagery. In NASA. Goddard Space Flight Center 3d ERTS-1 Symp., Vol. 1, Sect. B (No. PAPER-I12).

Trivero, P., Biamino, W, & Nirchio, F. (2007). High resolution COSMO-SkyMed SAR images for oil spills automatic detection. Proceedings of the geoscience and remote sensing symposium, IGARSS 2007 IEEE International: 2–5.

Williams, D. L., Irons, J. R., Markham, B. L., Nelson, R. F., Toll, D. L., Latty, R. S., & Stauffer, M. L. (1983, August). Impact of TM sensor characteristics on classification accuracy. In Proc. IGARSS (Vol. 83, pp. 5-1).

Xing, Q., Li, L., Lou, M., Bing, L., Zhao, R., & Li, Z. (2015). Observation of oil spills through landsat thermal infrared imagery: A case of deepwater horizon. Aquatic Procedia, 3, 151-156.

Published

2022-03-04

How to Cite

Jaime Yelsin Rosales Malpartida, & Hebbert Alexander Apaza Mamani. (2022). Analysis of Landsat 8 satellite images by principal components and MNF for the detection of areas of the Repsol oil spill on the Peruvian coast. Tecnohumanismo, 2(1), 288–306. https://doi.org/10.53673/th.v2i2.110